Assistant Professor Lydia Contreras and graduate student Fade Gong visualize DNA following gel electrophoresis.
Dear Alumni, Friends and ChE Parents:

I am pleased to send you this newsletter as part of our focus on a broader communication strategy with stakeholders, including students, alumni, ChE parents, citizens of Texas and the global chemical engineering community.

In this issue, you will learn about some of the innovative research our excellent faculty are producing, the successes and contributions of our dynamic students and alumni, as well as an update on the Challenge for McKetta fundraising effort. I hope you have had an opportunity to visit our new website (www.che.utexas.edu), which is continually updated with exciting educational and research activities in our department.

I also trust that you have received several of our e-newsletters, which let you know about significant accomplishments by faculty, students and alumni. The department has moved towards more electronic communications, including event invites and networking opportunities. If you are not currently receiving these communications, please update your information by emailing your current contact details to contactus@che.utexas.edu.

I will be completing my second term as department chair and stepping down at the end of this calendar year. The dean of the Cockrell School of Engineering along with chemical engineering faculty will select the next chair to begin in January 2013. I am confident our next academic leader will do an outstanding job.

This fall I will become director of the new Nanosystems Engineering Research Center for Nanomanufacturing Systems for Mobile Computing and Energy Technologies (NASCENT), which is funded by the National Science Foundation and based at The University of Texas at Austin. NASCENT is a multidisciplinary research and education center focused on developing the integrated machines, materials and models for high speed, large-area manufacturing of nano-enabled electronic and energy devices. Initially our research team will focus on mobile computing and mobile energy, with broader applications as well in sensing, energy, security and electronics.

I look forward to leading this new enterprise and feel immensely fortunate to have served as department chair, a leadership role which has helped prepare me for this next challenge. When I became chair seven years ago, I wanted to give back to the department and the university and in doing so have learned so much from my colleagues, students and alumni. I am extremely grateful for the opportunity to have chaired such a great department and to be part of the truly special community that is chemical engineering at UT Austin.

Thank you,

Roger T. Bonnecaze
William and Bettye Nowlin Chair in Engineering and
Bill L. Stanley Endowed Leadership Chair
Michael Baldea
Assistant Professor
Process Engineering, Energy

Baldea develops theory, models and algorithms for the solution of both practically important and fundamental problems in energy systems engineering. His research focuses on the development of modeling techniques for robust and efficient simulation and optimization of energy generation and storage systems, proactive energy management strategies for buildings, and efficient model-based fault detection and isolation schemes.

Baldea was elected the 2013 programming chair for the Systems and Process Control group of the American Institute of Chemical Engineers’ Computing and Systems Technology Division. He also co-authored the book “Dynamics and Nonlinear Control of Integrated Process Systems,” which was recently published at Cambridge University Press.

Lydia Contreras
Assistant Professor
Biotechnology, Modeling & Simulation

Contreras researches the interface of RNA-protein biology to solve complex problems in medicine and biotechnology. One problem she is tackling is disease-causing microorganisms that develop unusual resistance to various commonly-used antibiotics.

Her work in radioresistant organisms won the 2011 Defense Threat Reduction Agency Young Investigator Award. Contreras was selected to participate in the National Academy of Engineering’s third Frontiers of Engineering Education Symposium in 2011 and has been recognized as one of five Keystone Symposia Fellows on molecular and cellular biology.

Lea Hildebrandt Ruiz
Assistant Professor
Environmental Engineering

Hildebrandt Ruiz researches air quality, focusing on atmospheric nanoparticles, often referred to as aerosols, which have adverse effects on human health and a highly uncertain effect on climate. Her research tools include laboratory experiments using an environmental chamber, ambient measurements, and modeling.

The goal of Hildebrandt Ruiz’s research is to make better-informed recommendations for environmental policies aimed at improving air quality and human health. Her near-term projects include quantifying the effects of aerosols on reactive nitrogen chemistry and ozone production in Texas, and improving the understanding of atmospheric chlorine chemistry in the Dallas Fort-Worth region.

Hildebrandt Ruiz was elected the 2013 programming chair for the Aerosol Chemistry working group of the American Association for Aerosol Research.
When Lydia Contreras isn’t busy studying ribonucleic acid (RNA) or radioresistant organisms in her laboratory, you might find her doing much simpler things, like bird-watching, reading, jogging or even dancing to some Latin tunes.

“I’m a natural,” said Contreras, who is originally from the Dominican Republic. “My dad says I have been dancing since I was one.”

Contreras was born in Santo Domingo and came to the United States in 1999 to earn a B.S.E. in chemical engineering from Princeton University, followed by a Ph.D. in chemical and biomolecular engineering from Cornell University. In 2008 she worked as a National Institutes of Health postdoctoral fellow in infectious diseases and genetics at the Wadsworth Research Center (New York State Department of Health) in Albany, New York. She joined the UT Austin faculty in January 2011.

“Dr. Contreras’ expertise in biomolecular, metabolic and cellular engineering made her a highly sought after faculty candidate nationally,” said Roger T. Bonnecaze, department chair and the William and Bettye Nowlin Chair in Engineering. “I am delighted that she joined our other great faculty in chemical engineering.”

And Contreras has certainly hit the ground running. She won the 2011-2013 Defense Threat Reduction Agency Young Investigator Award for her work in radioresistant organisms and was selected as one of the nation’s most innovative, young engineering educators to participate in the National Academy of Engineering’s Third Frontiers of Engineering Education Symposium. She was also recognized as one of five Keystone Symposia Fellows on molecular and cellular biology.

“I’m very excited to be here,” Contreras said. “I applied for this job because of the department’s reputation and breadth in cutting-edge research. I also knew that the university has great graduate students and an excellent record for mentoring and developing new, young faculty.”

Her research group, made up of graduate and undergraduate students, studies how microbes respond to environmental changes with the hope to understand one day how to engineer and control these behaviors for various applications. One problem her team aims to tackle is disease-causing microorganisms that develop unusual resistance to various commonly-used antibiotics.

“The idea is that cells adapt and change, and we’re interested in what triggers these responses,” Contreras said. “We want to produce customized phenotypes that would allow us to exploit various unusual but very powerful features of bacteria.”

The group focuses on extremophiles to address how molecular connections are tuned so efficiently inside living cells to induce different metabolic states in response to environmental stresses.

“Our major goal is to establish new approaches for understanding and reprogramming regulatory circuits in vivo,” said Contreras. “We combine computational and experimental techniques to address fundamental aspects of these topics. Ultimately, we want to engineer synthetic global cellular controllers for the customization of useful phenotypes for biotechnology applications.”

With a successful research team up and running and recent honors under her belt, Contreras has settled in nicely. She’s also discovering all that Austin has to offer as a hometown.

“I’ve never lived in the south,” she said. “People here are very nice. I love outdoor activities and take advantage of running and bike trails around Lady Bird Lake. I’ve recently started to kayak.”
Creating fuel from sunlight sounds like something out of a sci-fi movie depicting technology of the future, but Professor Mullins and his team are working to make this concept a reality. Trailblazers in energy research, the Mullins Group is also studying materials in lithium-ion batteries for portable electronic devices and electric cars as well as catalytic materials for energy related processes.

All three projects could contribute to reducing the nation’s dependency on oil and lower carbon emissions to avert major effects of climate change. As gas prices climb and global temperatures rise, capturing renewable energy from the sun to generate clean fuel or power is a rewarding venture for researchers.

Mullins’ team is working on materials and processes that will utilize sunlight to generate a reaction that splits water into hydrogen and oxygen. Safely separating the two gases enables hydrogen to be employed as a fuel or chemical feedstock. Materials and processes are currently available to use sunlight to create fuel, but not efficiently or cheaply enough to be viable. The key is finding a material capable of absorbing and utilizing light effectively and coupling it together with an efficient catalyst for oxidizing and reducing water. The material must also be sturdy and cheap. In some ways, the material will mimic the photosynthetic machinery of plants to create energy. The idea is to use the material in panels that will likely cover many square miles in order to produce enough hydrogen for industrial use.

Working with veteran chemist Allen Bard, Mullins’ team examines the effects of nanostructuring on complex materials identified by Bard’s team. The Mullins Group experiments with the materials’ structure and looks for nanformations that improve the efficiency of a given compound. The best materials are then tested in prototype systems. If Mullins and Bard can achieve 10 percent efficiency with a material that is stable for 10 years and costs a couple dollars per square meter, they could be competitive. Currently, their material of focus is bismuth vanadium oxide, doped with some tungsten and molybdenum, which is performing at 1 percent efficiency.

The Mullins Group also identifies new materials with favorable structures for use in advanced lithium-ion battery electrodes. Carbon or graphite is typically used in commercial lithium-ion battery anodes, but safety issues persist. Safety for electric vehicles is of paramount importance, as is energy and power density.

The team is working with renowned colleague and chemical engineering research professor Adam Heller to improve the performance of silicon and other materials anodes in lithium-ion batteries which will reduce charge time, increase long term cyclability, and improve safety. The group recently published results in Chemical Communications regarding their evaluation of a silicon nanoparticle-based anode employing a halogenated electrolyte, which performed extremely well. Better lithium-ion batteries will provide cheaper power sources and a larger driving range for electric cars.

The Mullins Group is also involved in surface chemistry and catalysis research and has just begun collaborating with Adam Heller on direct catalytic processes regarding the conversion of natural gas into higher value products. Although the group has much experience in ultra-high vacuum studies of surface chemistry on well-characterized samples, catalytic research at atmospheric pressure over high surface area materials, similar to those used industrially, is a new line of investigation for the group.

Mullins holds the Z.D. Bonner Professorship and his group consists of 14 graduate students and 12 undergraduates dedicated to advancing renewable energy sources for the benefit of society, contributing to the university’s motto: “What Starts Here Changes the World.”

Visit the group’s website at http://research.engr.utexas.edu/mullins
Dave Allen received the Warren K. Lewis Award from the American Institute of Chemical Engineers (AIChE) in 2011. The award recognizes inspirational teachers with lasting educational influence who have impacted chemical engineering students as a result of creative ability and leadership.

Hal Alper was awarded the 2012 Regents’ Outstanding Teaching Award, granted by the University of Texas Systems’ Board of Regents. The award is the board’s highest honor and recognizes faculty members across University of Texas System academic institutions who have demonstrated extraordinary classroom performance and innovation in undergraduate instruction.

Michael Baldea won the 2011 Model-Based Innovation Prize from Process Systems Enterprise for the paper titled “Optimizing the Catalyst Distribution for Counter-current Methane Steam Reforming in Plate Reactors”.

Roger Bonnecaze was named Fellow of the AIChE. The election recognizes his influential contributions to chemical engineering through theoretical and experimental studies of suspensions, interfacial flows and biosensors.

John Ekerdt was awarded the 2012 American Society for Engineering Education Lectureship Award. The award acknowledges distinguished engineering educators who demonstrate achievement through the formulation of fundamental theory or principles, improvements of lasting influence to chemical engineering education with books and/or articles, and the demonstration of success as a teacher.

Chris Ellison won a 2012 DuPont Young Professor Award for his work in the production of nanofibers and bio-mimetic fibers. Ellison also received a 3M Non-tenured Faculty Award for his research to develop an environment friendly manufacturing approach for multifunctional nanofibers.

Benny Freeman was elected Fellow of the American Association for the Advancement of Science. Freeman was also awarded the 2012 Roy W. Tess Award in Coatings given by the Division of Polymeric Materials: Science and Engineering of the American Chemical Society. He was elected Fellow of the AIChE in 2011.

Keith Friedman was selected as the chemical engineering Outstanding Faculty Member as part of the 2012 Faculty Appreciation Week. The university-wide event allows students to show thanks and appreciation for faculty that have made a difference in their educational experience at UT Austin.

George Georgiou was inducted as a member of the Institute of Medicine of the US National Academies of Science. He is one of only 42 individuals to have been elected to both the National Academy of Engineering and to the Institute of Medicine. Georgiou has invented a number of technologies for protein therapeutics discovery and manufacturing that have been licensed to 14 pharmaceutical and biotechnology companies.

Tom Edgar accepted the F. J. and Dorothy Van Antwerpen Award for Service from the AIChE in 2011. The award recognizes service and leadership contributions in chemical engineering.
Keith Johnston was inducted Fellow by the American Institute for Medical and Biological Engineering for his seminal contributions to the utilization of supercritical processes and nanoparticle technologies in drug delivery. Johnston was also elected to the National Academy of Engineering in 2011.

Brian Korgel was awarded the 2012 Professional Progress Award for Outstanding Progress in Chemical Engineering by the AIChE. The award recognizes Korgel’s leading research in nanoparticle and nanowire synthesis and characterization.

Jennifer Maynard was awarded a 2012 Texas Exes Teaching Award. The award, which is student-nominated and student-selected, recognizes instructors who positively influence the educational experience of students.

Don Paul spent five weeks this summer doing research at the National University of Singapore where he has been appointed the Tan Chin Tuan Centennial Professor for a three-year term.

Nicholas Peppas recently received the 2012 Founders Award from the National Academy of Engineering. He was also elected a corresponding member of the Royal Academy of Pharmacy of Spain. Peppas was recognized as an Honorary Professor by Sichuan University in China and awarded the Billy & Claude R. Hocott Distinguished Centennial Engineering Research Award by the Cockrell School of Engineering this year.

Danny Reible won the 2011 Malcolm Pirnie Association of Environmental Engineering and Science Professors Frontier in Research Award for advancing environmental engineering and science through leadership and pioneering efforts in a new and innovative research area.

Gary Rochelle was recognized for his fundamental work in carbon capture with the 2012 Excellence in Industrial Gases Technology Award from the AIChE. Technology developed by Rochelle could play a major role in reducing the world’s carbon footprint and global warming. Rochelle also accepted the Donald L. Katz Award from the Gas Processors Association in 2011 for accomplishments in gas processing research and excellence in engineering education.

Peter Rossky was inducted to the National Academy of Sciences (NAS) in April 2012. Rossky was chosen in recognition of his distinguished and continuing achievements in original scientific research. NAS is the country’s most prestigious scientific organization, and election to membership in the academy is one of the highest honors that can be given to an engineer or scientist in the United States.

Christine Schmidt was elected a 2012 Fellow of Biomaterials Science and Engineering. Schmidt was recognized with the honor for her contributions to cellular and tissue engineering, including the design of biomaterials to stimulate nerve regeneration. Schmidt was also named a 2012 Distinguished Graduate by the Cockrell School of Engineering.

Tom Truskett, Keith Johnston and Jennifer Maynard have been awarded a $600,000 National Science Foundation grant to continue work developing a new form of proteins that could drastically improve drug delivery.

Grant Willson was elected Fellow of the Materials Research Society for his excellence in materials chemistry, lithography and microelectronic materials.

John J. McKetta Jr., professor emeritus in chemical engineering and former dean of the Cockrell School of Engineering, received the 2012 Donald L. Katz Award from the Gas Processors Association. The award recognizes accomplishments in gas processing research and excellence in engineering education.
The University of Texas at Austin has been selected to receive a five-year $18.5 million grant from the National Science Foundation (NSF) to create and lead a nanosystems engineering research center.

The Nanomaterials for Mobile Computing and Mobile Energy Technologies (NASCENT) will develop innovative nanomaterials, nanosculpting and nanometrology systems that could lead to versatile mobile computing devices such as wearable sensors, foldable laptops androllable batteries.

This is the first time UT Austin has been selected by the NSF to lead a prestigious and highly competitive engineering research center (ERC), and the first time since 1986 that a Texas university has been selected to lead an ERC. As of November 2011, there were 17 active ERCs across the United States.

Roger Bonnecaze, current chairman of the Chemical Engineering Department, will lead the center alongside S.V. Sreenivasan, professor of mechanical engineering and Thornton Centennial Fellow in the Cockrell School of Engineering.

"Nanomanufacturing is a critical advanced technology that can create sustainable high-paying jobs in the U.S. and energize industries across the electronics, energy, health care and security sectors," said Bonnecaze, NASCENT's co-principal investigator. "NASCENT's manufacturing systems will be crucial in helping transfer nanoscience discoveries from the lab to the marketplace."

With partners at the University of New Mexico and the University of California at Berkeley, NASCENT will create high-precision machines with integrated nanomaterials and multiscale models to enable the manufacturing of breakthrough nano-enabled mobile computing and energy devices.

"This is a game-changing center for not only UT, but for Texas and the nation," said Gregory L. Fenves, dean of the Cockrell School of Engineering. "Our interdisciplinary team of researchers and industry partners will move disruptive technologies from the lab to the market, creating revolutionary applications and the jobs to implement them."

The NASCENT center will also administer a pre-college program at each partner institution, working to identify students who are most likely to benefit and succeed from the program resources. The center expects to have 30 to 40 middle and high school students engaged as fellows when the program is fully operational.

"Nanotechnology is one of the most important frontiers there is," said William Powers Jr., president of The University of Texas at Austin. "Nanoscale breakthroughs will usher in inventions and solutions we can only dream of today."

These new technologies will have breakthrough performance in energy efficiency, computing, communications and data/energy storage capacity. For example, 40 percent of the energy used in cellphones is for reading and writing data to the phone’s memory. Researchers at the center will develop emerging manufacturing technologies to reduce energy needed for cellphone memory storage by up to three-quarters, while increasing data storage density by more than five times its current capacity.

The center will also work toward developing silicon nanowires for improved anodes in lithium ion batteries. The nanowires could increase the storage capacity of batteries by fourfold.

"The center will significantly bolster and foster a culture of innovation that extends beyond the university," Sreenivasan said, adding that The University of Texas at Austin and its partners have developed 12 startup companies based on their manufacturing research, creating more than 1,000 jobs and resulting in more than 170 licensed patents.

Several industry partners will participate in NASCENT, including Texas Instruments, 3M, Lockheed Martin, Applied Materials and Corning Inc., among others.
His career with Chevron Phillips Chemical Company is impressive, including the latest added title to his resume: Executive President of Saudi Polymers Company in Saudi Arabia, an affiliate of Chevron Phillips Chemical. Mike Zeglin is experienced, well-traveled and well-educated, but he offers more than what reads on paper.

Despite managing a great deal of responsibility, and a demanding schedule, Zeglin remains approachable. As an active alum, he gives back to the university in many ways. Since 2004, Zeglin has traveled back to Austin every semester to teach a class as part of the ChE Communications course. He came up with the idea while serving on the department’s External Advisory Council where he was intrigued by Professor D’Arcy Randall’s presentation to incorporate engineering ethics into coursework.

“I sought to share my experience in safety and risk assessment because nothing is more important than personal safety,” Zeglin said. “As a key leader on-site, I must ensure the right environment is in place to be safe and successful. At Chevron Phillips Chemical, we believe every employee has the right to go home safely every day.”

In his class, Zeglin teaches guidelines called the Tenets of Operation about working safely. These guidelines used at Chevron Phillips Chemical have a universal application and can improve students’ decision making in the workplace, as well as in their daily lives.

He also gives advice on building business relationships, often from a multi-cultural perspective. “During my time abroad, I have realized you must develop an understanding of the local culture to be successful,” he said.

With 14 nationalities and 27 languages present at Zeglin’s current work site in Saudi Arabia, bridging cultural barriers has been an important learning experience.

“It’s important to build personal and business relationships with managers at other companies in Saudi Arabia,” he said. “A good relationship is the cornerstone to good business. In the Middle East, taking time to drink tea with a manager from another company facilitates business discussions and is an important part of the culture.”

Influencing students is something Zeglin reveres. “The best advice I give students is to know thyself,” he said. “Know your strengths, work to maximize them, and, above all, dream big.” His mentoring mindset was largely instilled by his former Professor John J. McKetta.

“Dr. McKetta was a great mentor and he continues to influence my life today,” he said. “He taught me about hard work, discipline, and his rules of thumb to troubleshoot and problem solve. He inspired students to accomplish what others think impossible.”

In 1995 Zeglin donated to the McKetta Challenge, a ChE department fundraiser established when Dr. McKetta donated an amount equal to the sum of his paychecks from UT and asked alumni to match his gift. “With that kind of leadership at UT, it’s difficult not to find a way to give back,” he said.

Zeglin says he has seen a return on the investment by the caliber of UT ChE graduates recruited by Chevron Phillips Chemical. “A significant number of our engineers are UT graduates,” he said. “The UT ChE program is one of the best in the US and the quality of students reflects the department’s ranking. I have been recruiting engineers for a long time and the talent and skill level produced by the department seems to increase each year.”

To continue this success, Zeglin recently contributed to UT ChE’s current fundraiser, the Challenge for McKetta. The campaign is raising $25 million to secure programmatic excellence and to rename the department in honor of John McKetta.

Zeglin exemplifies the positive impact alumni can have on students. “Each of us is unique and has something to share that can make a difference in the university experience,” he said. “It’s an honor to be a UT graduate, and I’m just trying to do my part to sustain and enhance the experience for other students.”

Visit: www.che.utexas.edu/alumni/stay-engaged/
Chemical Engineering Fall 2012

Alumni News

Joan Brennecke (B.S. ’84) was recently elected a member of the National Academy of Engineers. She is currently the Keating Crawford Professor at Notre Dame University and directs the Center for Sustainable Energy.

Bacho Pilong (B.S. ’87) recently visited campus with his wife Siti, son Zaid and daughter Zahrah. The Pilongs are from Kuala Lumpur, Malaysia but now reside in Khartoum, Sudan. Bacho is President of Sudd Petroleum Operating Company Ltd., an exploration and production company.

Christine Schmidt (B.S. ’88), the B.F. Goodrich Endowed Professor of Materials Engineering in the Departments of Biomedical Engineering and Chemical Engineering at UT Austin, was elected a 2012 Distinguished Engineering Graduate by the Cockrell School of Engineering.

Stephanie Watts Butler (B.S. ’89, Ph.D. ’91) was elected fellow of the American Vacuum Society in 2011.

Walt K.W. Huang (Ph.D. ’84) and his family visited the department this summer from Jhunan Township, Taiwan. Walt is Chief Technology Officer of the R&D Division of Gintech Energy Corporation. They traveled to several cities in Texas to visit friends during their stay.

Nancy Jackson (Ph.D. ’90) is serving on the American Chemical Society’s (ACS) Board of Directors as immediate past president. Nancy served as ACS president in 2011. She is currently manager of the International Chemical Threat Reduction Department in the Global Security Center at Sandia National Laboratories in Albuquerque, New Mexico.

Stuart Chan (B.S. ’91) finished his master of engineering at the University of Illinois at Chicago and is currently working as the technical sales manager-Asia with DSM Food Specialties. Stuart is also a facility construction contract management engineer with the U.S. Army Reserves. He is pictured here with his wife Satomi and daughter Sarah in Kyoto, Japan.

John Stuber (Ph.D. ’96) was one of five elected as a Senior Member of Technical Staff at Texas Instruments in 2011.

Chris Seets (Ph.D. ’97), his wife Michelle, and their children, Trevor and Skylar, visited Professor Buddie Mullins on-campus in July. Chris works as director of engineering for Seagate in Excelsior, Minneapolis.

Shawn Coffee (B.S. ’04, Ph.D. ’07) and his wife Joy welcomed baby Patrick Philip (7 lbs. 6 oz.) July 2, 2012.

In Memoriam

Wes Hale (Ph.D. ’98) began his career as a senior research chemical engineer with Eastman Chemical Company in Kingsport, Tenn., from 1998 to 2008 and was most recently an applications engineer with Colortech, Inc., of Morristown, Tenn. He was known as an expert in polymeric materials types and was experienced in writing patent applications and patent prosecution. He invented numerous patents and received several awards for high performance in research, managing and public speaking.

For more notices visit: www.che.utexas.edu/alumni/in-memoriam
Late summer 2012, UT ChE received official approval from the Board of Regents to rename the department the John J. McKetta Jr. Department of Chemical Engineering. This naming reflects generosity from hundreds of alumni and friends who have supported the Challenge for McKetta campaign since its inception in 2006.

The Challenge for McKetta is an eight-year, $25 million fundraising opportunity for alumni, friends and corporate partners to help support students, faculty, facilities and programmatic excellence within the Department of Chemical Engineering for decades to come. The campaign recently surpassed the $11 million mark which triggered the formal renaming by the Board of Regents who determined the naming should be realized within 96-year-old John McKetta’s lifetime so that he could witness the impact of his legacy.

“My God, this is a beautiful thing,” said McKetta after Chair Roger Bonnecaze notified him of the news. “Most of all, I am thankful to each of my students for making me so proud. I have watched my students grow through their professional lives so successfully and every time I receive word of a promotion, I secretly take some credit and feel even prouder—if that’s possible.”

To continue momentum towards raising the remaining $14 million to complete the campaign by August 2014, a team of alumni volunteers called McKetta Ambassadors have assembled to reach out to fellow alumni and friends to promote this effort. In the months and years to come, you will hear from the department and from your ambassador with important updates and ways that you can contribute.

“It is a privilege to go from being a student of Dr. McKetta’s to seeing the department named after him,” said Tony Go, B.S. ChE ’86 and a McKetta Ambassador. “He has truly impacted countless lives and set the foundation for what UT Chemical Engineering is today.”

Now, more than ever, alumni contributions are vital to ensuring the continued success and growth of the department. Funds from this campaign will directly benefit the recruitment and support of outstanding students and world-class faculty, enhancements and additions to facilities and to endowments which will provide the long-term support the department relies on.

All philanthropic giving counts towards the Challenge for McKetta campaign, including outright gifts and multi-year pledges (payable over five years), documented estate bequests, and corporate matching. Alumni may designate their giving to the already established McKetta Challenge Fund Endowment or they may choose to create a new endowment in their own names to support scholarships, fellowships, faculty or excellence in the department.

Learn more and make your pledge at www.che.utexas.edu/alumni/invest.

Come to the Alumni Tailgate Saturday, November 10, 2012 to celebrate the renaming of the department after John J. McKetta Jr.

Event details and the tailgate RSVP are online at www.che.utexas.edu/event/alumni-tailgate/
Challenge for McKetta Donors

We would like to thank the following alumni, friends, corporate partners and foundations for their gifts made in support of the Challenge for McKetta. Gifts made between 9/1/2006 and 8/31/2012 are listed alphabetically by decade of first degree. Every attempt has been made to ensure this list is accurate. Please notify Kelsey Evans at 512-471-6151 with any errors so that we may correct our records. Thank you for your support.

ChE Alumni

1930's
Estate of Joseph Sidney Levine

1940's
Clifford L. Barr
C. Raymond Burklin
Clyde W. Day, P.E.
R. W. Dirks
Earnest F. Gloyna
Howard A. and Betty Halff
Langley R. and Katherine C. Hellwig
T. Brockett Hudson
Daniel M. Krausse
Estate of Herbert E. Lindhe
Radford L. Nowlin
James H. Templeton
James C. Upchurch
M. A. Vela Jr.
Eugene R. Werlein

1950's
Billy B. Ashby
Robert C. Ayers Jr.
Travis W. Bain II
Hugh E. Blazek
Condell (Bud) D. Brazier
Harvey A. Campbell
A. E. and Sally Seale Chionsini
L. C. Courtney Jr.
Sam Crowther
Everett E. Culver
Don N. Dale
Jerry E. Davis
Leonard E. Emge
Gary D. Fisher
E. Doyle Fowler
John and Virginia Gidley
Leonard A. Goldstein
James C. Gresham
Phillip W. Hawley
Jack L. Hummel
James W. Kachtick
James L. Lakemeyer
Carl T. Levander
Estate of Frank A. Liddell Jr
George W. Lowe
Paul D. Meek
Rex Montgomery
Leslie M. Moor Jr.
Furst M. Moore
Thomas K. Perkins
A. J. Phipps Jr.
Mervin Rosenbaum
George and Bettie Sarver
Russell U. Smith
Guillermo H. Steta
R. Frederick Stone
Glenn E. Taylor
Hollis M. Taylor
Robert and Ann Timmins
J. Richard Vandergriff
C. Robert West
Dave H. Williams

1960's
Richard F. Ables
R. G. Anthony
Godfrey S. Baldwin
David W. Bennett
William A. Biggs III
Raymond E. Bodnar
Peter R. and Claire Buenz
Finis E. Carleton III
Donald and Elaine Carlton
Ernie and Janet Cockrell
Dudley R. Dobie
A. Rhew Dooley,
Dooley Family Foundation
Ralph and Reba Ferrell
C. Jay and Jacqulyn W. Forrest
Otto M. Friedrich
Hugh G. Gainey
Brian P. Hanson
Douglas P. Harrison
John S. Hartman
Randolph Heartfield
Dexter Hill, P.E.
William R. Klingman
William J. Koros
Robert P. Kuhlman
E. Russell Lambert III
Rick Lentz, Lentz Family Trust
Charles E. Loeffer
Rafael B. Marquez
James D. Miller
Lloyd M. Monroe Jr.
Raleigh W. Moses
F. Oliver Nicklin
Robert W. Reinicke
Ramon K. Robinson
Sanford R. Setliff
Robert W. Silman
Bill L. Stanley
Curtis N. Strong Jr.
Gary F. Taft
Van W. Teeters
Thomas H. Timmins
Bobby A. Weaver

1970's
Hassan Arabghani
Louis A. Beecherl III
Ronald L. Buls
Frances M. Chan
Joe E. Conway
Jonathan C. Dahm
Brian Dinsmoor
Susan R. Engel
Blake T. and Martha P. Eskew
Paul W. Fisher and Mary Linda Portner
Bernard L. Fritz
Raul D. Garcia
Gregg A. Goodnight
Steven E. Hall
James E. Harris
John C. Henderson
Kristina E. Hill
Colleen M. Hutchings
Darrell and Joyce Jacob
Diana Naylor Knox
Joe D. Kuebler
W. Andrew and Cathy Lang
Jess A. McAngus
J. Scott McEwen
Donald D. Mulraney
Horace G. Nebeker Jr.
Douglas E. Osterhus
W. Allen Parks Jr.
Michael Poehl
H. S. Pollicoff
Frank E. Resch III
Les and Sherri Stuewer
Bruce C. Thornton
Mark G. White
James T. Wilkins
Kerry S. Yom
Michael F. and Cindy Zeglin

1980's
Stephen E. Anderson
Jose L. Bravo
Troy J. Campione
Curtis and Lisa Carlson
D. Kirk Edwards
1980s
William M. Flarsheim II
Peter J. Gilmore
Tim Go
Tony Go
Mark W. Hellums
Kuei-Wu Huang
Jeffrey T. Jones
Robert C. Junge
Michael C. Mai
Gerald G. McGlamery Jr.
Glenn and Deborah Nichols
Richard B. Perkins II
Jennifer J. Person
Kathleen A. Phair
Greg and Elizabeth Pipkin
Scott M. Prochazka
Joseph R. Ruiz
Amar Sawhney,
Sawhney Family Foundation
Joan M. Schork
Page P. Schreck
A. Frank Seibert
Brian W. Sharp
Thomas S. Stephens
David W. Stevens
Pamela S. Tucker
Connie D. Weaver
Thomas Wellborn,
Wellbornyx Corporation
Carolyn E. Schmit
Joseph H. Tingsanchali
Franklin T. Willmore
Jessica O. Winter

2010’s
Hillary R. Call

Friends
Roger T. Bonnecaze
Louis P. Bosanquet
Ting Tsung and Wei Fong Chao
Ruth C. Crawford
Christopher M. Curran
Thomas and Donna Edgar
Stan Firebaugh
John M. Gidley
Maurine & Robert D. Goodrich
Linda A. Harris
Adam Heller
Harold L. Hoffman
Keith P. Johnston
Donald M. Kehn
Ernesto Maldonado
Hans M. Mark
Christine L. Masters
Kathleen B. McCullar
John J. and Helen S. McKetta
Jeff and Becky Edgar Melton
Raj Nisankarao
Peter O’Donnell, Jr.
Sarah H. Parks
Shirley P. Rabke
Bobby E. Reeves
Theresa S. Rimkus
Robert H. Rossen
Karl B. Schnelle
Scurlock Foundation
Constance H. Shipp
Daniel E. Steinmeyer
Jim and Betty Stice
John M. Thorman
Jean W. Tom
Isaac Trachtenberg
Thomas Tulig
Nicholas F. Urbanski
Laurelie M. Wallace
Phillip Woodrow
Fletcher Wright
Eleanor M. Wyant
Xiaohui Zhang

Corporations
Advanced Micro Devices Inc.
Air Products Foundation
Anadarko Petroleum Corporation
BHP Billiton Limited
BP Amoco Oil
BP Foundation Inc.
Bristol-Myers Squibb Company
Cache Corporation
Caterpillar Foundation
Chevron Phillips Chemical Company
ChevronTexaco Products Company
Chemical Logic Incorporated
ConocoPhillips Company
Chevron
El Paso Electric Company
Exxon Mobil Corporation
ExxonMobil Foundation
Fluor Enterprises Inc.
The Fluor Foundation
Fractionation Research, Inc.
Frito-Lay
Helen & John McKetta Jr. Fund
IBM International Foundation
Intel Corporation
Intel Foundation
KBR Inc.
The Lubrizol Foundation
Marathon Oil Company
Marathon Oil Company Foundation
Merck & Company Inc.
The Merck Company Foundation
Olin Corporation Charitable Trust
Omicron Nanotechnology USA
Penco Inc.
PepsiCo Foundation Inc.
Pfizer Inc.
Procter & Gamble Fund
Rohm and Haas Company
Sealed Air
Shell Oil Company
Shell Oil Company Foundation
Siemens Power Generation Group
Total Petrochemicals USA Inc.
UBS Foundation USA
University of Texas Foundation Inc.
Vanguard Charitable Endowment
Valero Energy Foundation
White & Case LLP
Birth Announcements

Cindy and Miguel Figueroa welcomed Eloisa April 27 at 7 lbs. 12 oz. Cindy is the senior administrative assistant in the Chair’s Office.

Jasper Caperton was born weighing 9 lbs. 1 oz. on May 28 to Tommy Caperton and Sarah Caperton-Deberry. Sarah is the administrative associate for Drs Edgar and McKetta.

Elizabeth and Michael Miller are new proud parents of Bridget Miller born June 26 at 7Ibs. 15 oz. Elizabeth is the administrative associate for Drs Georgiou and Iverson.

Retirements

Kay Costales-Swift retired in July 2012 after 29 years of greeting students, faculty and guests while managing the chemical engineering front desk.

Patty Marcum retired in June 2012 after 7 years working as administrative associate with Professor Nicholas Peppas. Patty previously retired in August 2003 after an initial 31 years with the university.

Kathleen Sparks retired in November 2011 after 26 years of university service. She was administrative assistant to ChE Professor Grant Willson for 18 years.

Latest Hires

Carrie Brown joined the team as administrative assistant in August 2012.

Mindy Maloney started as administrative assistant to Nicholas Peppas at the end of May 2012.

Jon Peck joined UT ChE as administrative assistant to Professor Brian Korgel in February 2012.

Cindy Figueroa was hired as the senior administrative assistant in the chair’s office in October 2010.

Marisa Meier is the department’s communications coordinator, a role that was put into place in September 2010.
Remembering Professors Steinfink, Himmelblau, and Brock

Hugo Steinfink
Professor Emeritus

Hugo Steinfink, the T. Brockett Hudson Emeritus Professor, passed away August 25, 2012, following complications from a cardiac procedure at age 88.

He was a world-class expert on the crystal chemistry, structure and physical properties of rare earth and transition metal compounds. In 1987 he led the team that defined the unique stoichiometry and structure of the high temperature superconductor YBCO (YBa2Cu3O7-x), opening the field of structural-chemical research on these unique and now technologically important materials, used as magnets for magnetic resonance imaging and for magnetic levitation. Hugo joined the UT Austin faculty in 1960.

David Himmelblau
Professor Emeritus

David Himmelblau, the Paul D. and Betty Robertson Meek and American Petrofina Foundation Centennial Professor Emeritus in Chemical Engineering, passed away April 27, 2011 in Austin at age 87.

David taught at the university for 42 years. He authored 11 books and over 200 articles on process analysis, process optimization and fault detection using artificial neural networks. His book “Basic Principles and Calculations in Chemical Engineering” was recognized as one of the most important books in the field by the American Institute of Chemical Engineers (AIChE).

James Rush Brock
Professor Emeritus

James Rush Brock passed away peacefully at his home in Austin December 7, 2011 at age 80. He served as a faculty member in the Department of Chemical Engineering from 1960–1999 and was the Kenneth A. Kobe Professor. Jim was a world leader in aerosol chemistry and physics, including applications to air quality and nanoparticle synthesis.

His fields of interest were: aerosol physics and chemistry, environmental science, plasma physics, statistical mechanics, thermodynamics, reaction kinetics, atmospheric physics, rarefied gas dynamics and nanotechnology. From 1962-1963 he was a postdoctoral fellow at the Universite Libre de Belgique, Brussels, working under Dr. Ilya Prigogine, winner of the 1977 Nobel Prize in chemistry.

Make a gift at www.che.utexas.edu/alumni/invest/honor-a-professor/
Do we have your email?

We’re in a digital age—update your email address and contact information to stay connected with UT ChE. We send invites, news, announcements and networking opportunities electronically.

Send your current address and email to contactus@che.utexas.edu.

Upcoming Dates

John McKetta’s 97th Birthday
October 17
Make a gift in his honor at www.che.utexas.edu/alumni/invest

UT Austin AIChE Annual Meeting Reception
October 29 • Somerset Room, second floor • Westin Hotel • 1000 Penn Ave. Pittsburgh, PA 15222
7:00 p.m.-9:00 p.m.

External Advisory Council Meeting
November 9 • ECJ 10th floor conference room on-campus, Austin, TX • 7:45 a.m.-3:00 p.m.

Alumni Tailgate
November 10 • CPE front lawn • Three hours before kick-off (game time TBA)