PROCESS MODELING AND CONTROL

T.F. Edgar
The Department of Chemical Engineering

The University of Texas at Austin

- What is process modeling and control
- Why improve the technology
- Process control research in our department
• Ensure safe plant operation
• Meet product specifications
• Optimize economic performance
• MIMO (vs. SISO) models
• Nonlinear (vs. linear) models
• Stochastic variables
• Large number of variables
- Control System Monitoring and Diagnosis
- Dynamic Modeling of Chemical Processes
- Materials Processing
- Dynamic System Identification
- NMPC and Moving Horizon Predictions
- Optimization Theory and Algorithms
- Statistical Process Monitoring/Fault Diagnosis

www.che.utexas.edu/twmcc
TWCCC - Multiple Projects

<table>
<thead>
<tr>
<th>Company</th>
<th>JBR</th>
<th>TFE</th>
<th>JQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott Labs</td>
<td></td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>AMD</td>
<td></td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>Aspentech</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemstations</td>
<td></td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Chevron</td>
<td></td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>Eastman</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Emerson Proc. Mgt.</td>
<td></td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Johnson Control</td>
<td></td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>Praxair</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samsung</td>
<td></td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Shell</td>
<td></td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Tokyo Electron</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weyerhaeuser</td>
<td></td>
<td></td>
<td>v</td>
</tr>
</tbody>
</table>

Courting Dow, Boise, Air Liquide, Bayer, Freescale, Intel, Honeywell, TOTAL, Capstone Technology, TresArk
M.S., Ph.D. Graduates (2004 - 2006)

<table>
<thead>
<tr>
<th>Student/Supervisor</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Wang (JQ)</td>
<td>Ph.D. (5/04) Auburn University</td>
</tr>
<tr>
<td>E. Haseltine (JBR)</td>
<td>Ph.D. (12/04) Vertex Pharmaceuticals</td>
</tr>
<tr>
<td>R. Good (JQ)</td>
<td>Ph.D. (8/04) AMD</td>
</tr>
<tr>
<td>W. Lin (JQ)</td>
<td>Ph.D. (5/05) Postdoc (U. Minn)</td>
</tr>
<tr>
<td>P. He (JQ)</td>
<td>Ph.D. (5/05) Tuskegee University</td>
</tr>
<tr>
<td>J. Hedengren (TFE)</td>
<td>Ph.D. (5/05) ExxonMobil</td>
</tr>
<tr>
<td>W. Cho (TFE)</td>
<td>Ph.D. (5/05) Consultant</td>
</tr>
<tr>
<td>E. Hale (JQ)</td>
<td>Ph.D. (8/05) NREL</td>
</tr>
<tr>
<td>R. Chong (TFE)</td>
<td>M.S. (8/05) AMD</td>
</tr>
<tr>
<td>L. Rueda (TFE)</td>
<td>Ph.D. (12/05) Shell</td>
</tr>
<tr>
<td>S. Harrison (TFE)</td>
<td>Ph.D. (5/06) AMD</td>
</tr>
<tr>
<td>D. Castineira (TFE)</td>
<td>Ph.D. (5/06) Shell</td>
</tr>
<tr>
<td>C. Harrison (JQ)</td>
<td>Ph.D. (5/06) Marathon Oil</td>
</tr>
<tr>
<td>A. Venkat (JBR)</td>
<td>Ph.D. (5/06) Shell</td>
</tr>
<tr>
<td>K. Chamness (TFE)</td>
<td>Ph.D. (12/06) Spansion (AMD)</td>
</tr>
<tr>
<td>G. Cherry (JQ)</td>
<td>Ph.D. (12/06) AMD</td>
</tr>
</tbody>
</table>
M.S., Ph.D. Graduates
(2007 – 2008)

<table>
<thead>
<tr>
<th>Student/Supervisor</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Farmer (TFE)</td>
<td>Ph.D. (5/07)</td>
</tr>
<tr>
<td>J. Yu (JQ)</td>
<td>Ph.D. (5/07)</td>
</tr>
<tr>
<td>P. Larsen (JBR)</td>
<td>Ph.D. (7/07)</td>
</tr>
<tr>
<td>E. Mastny (JBR)</td>
<td>Ph.D. (7/07)</td>
</tr>
<tr>
<td>M. Rajamani (JBR)</td>
<td>Ph.D. (10/07)</td>
</tr>
<tr>
<td>C. Schoene (JQ)</td>
<td>Ph.D. (12/07)</td>
</tr>
<tr>
<td>Y. Cai (JQ)</td>
<td>Ph.D. (8/08)</td>
</tr>
<tr>
<td>A. Prabhu (TFE)</td>
<td>Ph.D. (8/08)</td>
</tr>
<tr>
<td>H. Lee (TFE)</td>
<td>Ph.D. (8/08)</td>
</tr>
<tr>
<td>Y. Zhang (TFE)</td>
<td>Ph.D. (8/08)</td>
</tr>
<tr>
<td>B. Bregenzer (JQ)</td>
<td>Ph.D. (12/08)</td>
</tr>
<tr>
<td>D. Weber (TFE)</td>
<td>Ph.D. (8/09)</td>
</tr>
<tr>
<td>S. Abrol (TFE)</td>
<td>Ph.D. (8/09)</td>
</tr>
<tr>
<td>B. Parkinson (TFE)</td>
<td>M.S. (8/09)</td>
</tr>
<tr>
<td></td>
<td>Capital One</td>
</tr>
<tr>
<td></td>
<td>Shell</td>
</tr>
<tr>
<td></td>
<td>Dow</td>
</tr>
<tr>
<td></td>
<td>BP Alaska</td>
</tr>
<tr>
<td></td>
<td>BP</td>
</tr>
<tr>
<td></td>
<td>Multiphase Solutions</td>
</tr>
<tr>
<td></td>
<td>Freescale</td>
</tr>
<tr>
<td></td>
<td>Air Liquide</td>
</tr>
<tr>
<td></td>
<td>Intel</td>
</tr>
<tr>
<td></td>
<td>ExxonMobil</td>
</tr>
<tr>
<td></td>
<td>Interviewing</td>
</tr>
<tr>
<td></td>
<td>Shell Oil</td>
</tr>
<tr>
<td></td>
<td>Interviewing</td>
</tr>
<tr>
<td></td>
<td>Interviewing</td>
</tr>
</tbody>
</table>
Edgar Group Highlights

- 3 PhD’s graduated in 2007-08
- 30+ papers in journals/proceedings published or in press since 1/2004
- 3 new students and 1 postdoc added to group in 2007-08
 B. Gill – IIT; D. French – Ohio State; B. Parkinson – Idaho State; K. Han – Seoul N.U.
- 2007 AEC/APC Student Paper Award (B. Parkinson)
- T. Edgar selected as IFAC Fellow
Ph.D Candidates Graduated in 2008

3. Hyung Lee (8/08): Advanced Process Control and Optimal Sampling in Semiconductor Manufacturing
Yang Zhang

• **First Principles Modeling**
 - Proposed new algorithm for dynamic DOE (P-optimal)
 - Successfully tested on simulated industrial processes
 - Getting data from industrial bioprocess @ Broadley-James

• **Statistical Modeling**
 - Proposed new PCA-based algorithm for data synchronization and on-line monitoring
 - Algorithm package is being commercialized by Emerson
 - On-site software testing @ Lubrizol, Broadley-James
Amogh Prabhu

- Developed performance monitoring methodology for run-to-run EWMA controllers, validated on industrial data
- Missing data estimation performed using data reconstruction for processing monitoring
- New method for state estimation for high mix semiconductor manufacturing facilities
- PID controller optimization for nonlinear processes
Dynamic sampling methodology depends on the characteristics of the process and disturbances
- When the process has little variation, dynamic sampling has little effect but does not degrade the control performance

The online dynamic sampling algorithm was extended for high-mix manufacturing

Using integrated scatterometry with W2W FB control can correct for variations of an etch chamber over time within a lot

Constrained multivariable control in etch is required to achieve better manufacturing performance with more CVs (CD, sidewall angle, uniformity)
Edgar Group Project Areas

• Multivariable Control/Estimation
• Semiconductor Manufacturing Monitoring and Control
• Optimization of Petroleum Reservoir Production
• Flue Gas CO₂ Removal Strategies (Modeling, Control, Optimization)
• Model-based Fault Detection
• Diabetes Closed-loop Control
Multivariable Control and Estimation

- D. French – Wireless feedback control (Emerson Process Management)
- D. Thiele – Model predictive control performance enhancements from dynamic state feedback update (Emerson Process Management)
- J. Lee (postdoc) – Various topics in multivariable control (e.g., multiloop PI controller design, interaction analysis)
- S. Abrol – Use of ISAT in operating training simulators (Chemstations)
- I. Castillo – Fundamental model-based fault detection (Roberto Rocca Fellowship)
- B. Spivey – On-line estimation using fundamental models (NSF – IGERT, joint with John Ekerdt)
Semiconductor Manufacturing Modeling/Control

- New student – Trade-offs between performance and measurement (AMD)
- New student – Control loop performance monitoring (Texas Instruments)
- B. Parkinson – Optimization of plasma etch processing (Tokyo Electron)
- K. Baek – Sensor selection and evaluation for plasma etching (Samsung)
- K. Han – Run to run control (Korean Government postdoctoral fellowship)
- B. Gill – soft sensors in etch processes (Texas Instruments)
Other Projects

• D. Weber– Petroleum reservoir production optimization (Joint with Larry Lake – Oil Company Consortium)

• S. Ziaii – CO₂ absorption process modeling and control/power plant energy integration (Joint with Gary Rochelle – U.S. DOE and UT Carbon Management Consortium)

• New student – Dynamic modeling of blood glucose in Type 2 diabetes
Recent Publications/Presentations

• “Multivariate Statistical Process Control” by Yang Zhang and T.F. Edgar; Chapter 8 in *New Directions in Bioprocess Modeling and Control* by G. McMillan and M. Boudreau (ISA)

• Keynote Presentation at *AdConip Conference* (Jasper, Alberta): “Process Control – Batch to the Future”