Computational Materials Design and Discovery
Energy and Electronic Applications
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First principles-based computations can provide invaluable guidance on the rational
design and synthesis of new materials with desired properties, without slow and
costly try-and-modify test and manufacturing cycles!




Materials Challenges
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Hwang Research Group
Computational Design of Nanomaterials for Energy and Electronic Applications

Batteries
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Catalysis

Our research has a well-balanced emphasis on
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'Applications s
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Structure-property r elatwnahlp of nanomaterials

= strategies for predictive multiscale,
multiphysics computational models by
integrating various state-of-the-art
theoretical methods at different length
and time scales.

= 3 quantitative understanding of the
relationship between the synthesis,
structure, and properties of
nanostructured materials and systems.

Quantum Molecular Statistical Contimuum
Mechanics Dynamics Mechanics Mechanics




Lithium lon Batteries

Recent achievements

» Elucidate the lithiation mechanisms of siicon-based nanomaterials.
* Provide many insights into how to design nanostructures and composites to achieve

desired properties and performance.

Surface/Interface Impacts

= Fast Li diffusion (fast charge rate)
= Facile atomic rearrangement & Uniform
lithiation/delithiation (improved cyclability)

Nanowires

" Si-C composites
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Si suboxides
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Si-rich suboxides

... highlights the possibility of designing
high performance Si suboxi9e anQdess«,
via fine-tuning of the
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Recent Publications

Appl. Surf. Sci. 323, 78 (2014)-invited
J. Power Sources 263 C, 252 (2014)
Chem. Mater. 25, 3435 (2013)

J. Phys. Chem. C 117, 9598 (2013)
Surf. Sci. 612, 16 (2013)

J. Phys. Chem. C 115, 20018 (2011)
J. Phys. Chem. C 115, 2514 (2011)

J. Phys. Chem. C 114, 17942 (2010)

© NOoO A~ WNRE




Graphene-based Supercapacitors

Recent achievements

» |dentify the key factors determining the interfacial
capacitance of graphene-based supercapacitors

* Provide new insight into the impacts of the chemical
and/or mechanical modifications of graphene-like
carbon electrodes on the supercapacitor performance.
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Recent Publications

J. Chem. Phys., accepted (2014)

J. Phys. Chem. C 118, 21770 (2014)
ACS Appl. Mater. Interfaces 6, 12168
Carbon 68, 734 (2014)

J. Phys. Chem. C 117, 23539 (2013)
Phys. Chem. Chem. Phys. 15, 19741
J. Phys. Chem. C 117, 5610 (2013)

J. Electrochem. Soc. 160, Al (2013)




Solar-powered H, Production

Recent achievements

» Elucidate the effects of chemical doping and structural distortions on charge carrier
localization and transport, and their impacts on the photocatalytic performance.

» |dentify the role of photogenerated charge carriers in promoting surface reactions.

Doping/Structural distortion

= Band gaps and band alignments
= Charge localization and transport
= Defect formation and properties
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Chem. Mater. 13, 4624 (2001)

Electron doping effect
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Computational
Screening, Design & Evaluation

Candidate Photocatalysts
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{MHE = Normal Hydrogen Electrode]

= Visible light absorption
(Band gap = 1.6-2.2 eV)
= Correct band edge positions
= High charge carrier mobility
= Low defect density
= High surface reactivity
= High resistance to photocorrsion

Photocatalytic reaction

.. highlights that excess electrons and holes can
synergetically contribute to CO photooxidation on
TiO,(110) under UV irradiation.
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Recent Publications

ACS Catal. 4, 4051 (2014)

Phys. Chem. Chem. Phys. 17, 256 (2015)
Appl. Phys. Lett. 103, 131603 (2013)
Phys. Rev. B 87, 205202 (2013)

Phys. Rev. B 86, 165209 (2012)

J. Phys. Chem. C 115, 17870 (2011)
More coming soon ...
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Electrocatalysis in Fuel Cells

Develop low-Pt or Pt-free metal catalysts that are more active, more
abundant, and less expensive than the currently used Pt-based catalysts.

First principles-based

Precise determination of the atomic
arrangements in near-surface layers

.......

model NP Shapes

Classical Force Field

Fast exploration of the coarse space
of nanoparticle shapes

?ﬁface ensembles

Quantum Mechanics

ORR activity of selected multimetallic
nanocatalysts; ensemble, ligand, size-shape
effects ..???
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Recent Publications

J. Chem. Phys. 139, 201104 (2013)
Chem. Soc. Rev. 42, 5002 (2013)

J. Am. Chem. Soc. 135, 436 (2013)
Phys. Chem. Chem. Phys. 15, 12118
J. Chem. Phys. 139, 164703 (2013)
Chem. Mater. 25, 530 (2013)

J. Phys. Chem. Lett. 3, 566 (2012)
J. Phys. Chem. C 115, 21205 (2012)
. Catalysis Today 165, 138 (2011)
10.J. Phys. Chem. C 114, 21516 (2010)
11.J. Phys. Chem. C 114, 14922 (2010)
12.J. Phys. Chem. C 113, 12943 (2009)
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Multiscale Modeling Strategy for screening multimetallic electrocatalysts




Waste Heat Conversion into Electricity

Understand the properties and performance of nanomaterials for thermoelectric
applications with a particular focus on their thermal conductivity

Heat <> Electricity
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Spacecraft’s energy source Solar Cell Waste Heat Recovery

Alloying
Chemical Doping
Defect engineering

Nanostructuring
Compositing

Recent Publications
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J. Appl. Phys. 114, 174910 (2013)
Phys. Rev. B 86, 165209 (2012)
Nano Lett. 12, 2918 (2012)

Phys. Rev. B 85, 125204 (2012)
Phys. Rev. B 83, 125202 (2011)
More coming soon




CO, Capture and Conversion

.... provide the guiding principles for the rational design

@ and synthesis of novel regenerable amine-based
A \. solvents to realize the desired properties and
- & performance for CO, capture, through systematic

theoretical investigations of the atomistic mechanisms
governing CO, capture and solvent regeneration.
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Top-notch Computational Resources

High Performance Computing Systems at UT-Austin (http://www.tacc.utexas.edu)

(1) “STAMPEDE”
One of the largest computing systems in t
world for open science research.

= 102,400 Processing Cores
= 205 TB Memory
= 7+ Petaflops of Peak Performance

(2) “LONESTAR”
One of the most powerful academic supercomputers in the world.

= 22,656 Processing Cores
= 44 TB Memory
= 300+ Teraflops of Peak Performance

Successful completion of our extensive first principles-based investigations can
be facilitated by utilizing the world’s top-class supercomputing facilities.




