Computational Materials Design and Discovery Energy and Electronic Applications

First principles-based computations can provide invaluable guidance on the rational design and synthesis of new materials with desired properties, without slow and costly try-and-modify test and manufacturing cycles!

Materials Challenges

Cheap

- Abundant
- Efficient
- Safe

Hwang Research Group

Computational Design of Nanomaterials for Energy and Electronic Applications

Our research has a well-balanced emphasis on

- strategies for predictive multiscale, multiphysics computational models by integrating various state-of-the-art theoretical methods at different length and time scales.
- a quantitative understanding of the relationship between the synthesis, structure, and properties of nanostructured materials and systems.

Lithium Ion Batteries

Recent achievements

- Flucidate the lithiation mechanisms of silicon-based nanomaterials.
- Provide many insights into how to design nanostructures and composites to achieve desired properties and performance.

Surface/Interface Impacts

- Fast Li diffusion (fast charge rate)
- Facile atomic rearrangement & Uniform lithiation/delithiation (improved cyclability)

Molecular Modeling

Si-rich suboxides

Recent Publications

- 1. Appl. Surf. Sci. 323, 78 (2014)-invited
- 2. J. Power Sources 263 C, 252 (2014)
- Chem. Mater. 25, 3435 (2013)
- 4. J. Phys. Chem. C 117, 9598 (2013)
- 5. Surf. Sci. 612, 16 (2013)
- 6. J. Phys. Chem. C 115, 20018 (2011)
- 7. J. Phys. Chem. C 115, 2514 (2011)
- 8. J. Phys. Chem. C 114, 17942 (2010)

Graphene-based Supercapacitors

Recent achievements

- Identify the key factors determining the interfacial capacitance of graphene-based supercapacitors
- Provide new insight into the impacts of the chemical and/or mechanical modifications of graphene-like carbon electrodes on the supercapacitor performance.

Structural deformation effect

Doping effect

Recent Publications

- 1. J. Chem. Phys., accepted (2014)
- 2. J. Phys. Chem. C 118, 21770 (2014)
- 3. ACS Appl. Mater. Interfaces 6, 12168
- 4. Carbon 68, 734 (2014)
- 5. J. Phys. Chem. C 117, 23539 (2013)
- 6. Phys. Chem. Chem. Phys. 15, 19741
- 7. J. Phys. Chem. C 117, 5610 (2013)
- 8. J. Electrochem. Soc. 160, A1 (2013)

Solar-powered H₂ Production

Recent achievements

- Elucidate the effects of chemical doping and structural distortions on charge carrier localization and transport, and their impacts on the photocatalytic performance.
- Identify the role of photogenerated charge carriers in promoting surface reactions.

Doping/Structural distortion

- Band gaps and band alignments
- Charge localization and transport
- Defect formation and properties

Computational Screening, Design & Evaluation

- Visible light absorption (Band gap = 1.6-2.2 eV)
- Correct band edge positions
- High charge carrier mobility
- Low defect density
- High surface reactivity
- High resistance to photocorrsion

Photocatalytic reaction

... highlights that excess electrons and holes can synergetically contribute to CO photooxidation on TiO₂(110) under UV irradiation.

Recent Publications

- 1. ACS Catal. 4, 4051 (2014)
- 2. Phys. Chem. Chem. Phys. 17, 256 (2015)
- 3. Appl. Phys. Lett. 103, 131603 (2013)
- 4. Phys. Rev. B 87, 205202 (2013)
- 5. Phys. Rev. B 86, 165209 (2012)
- 6. J. Phys. Chem. C 115, 17870 (2011)
- 7. More coming soon ...

Electrocatalysis in Fuel Cells

Develop low-Pt or Pt-free metal catalysts that are more active, more abundant, and less expensive than the currently used Pt-based catalysts.

First principles-based

Precise determination of the atomic arrangements in near-surface layers

Classical Force Field

Fast exploration of the coarse space of nanoparticle shapes

surface ensembles

Quantum Mechanics

ORR activity of selected multimetallic nanocatalysts; ensemble, ligand, size-shape effects ..???

Recent Publications

- 1. J. Chem. Phys. 139, 201104 (2013)
- 2. Chem. Soc. Rev. 42, 5002 (2013)
- 3. J. Am. Chem. Soc. 135, 436 (2013)
- 4. Phys. Chem. Chem. Phys. 15, 12118
- 5. J. Chem. Phys. 139, 164703 (2013)
- 6. Chem. Mater. 25, 530 (2013)
- 7. J. Phys. Chem. Lett. 3, 566 (2012)
- 8. J. Phys. Chem. C 115, 21205 (2012)
- 9. Catalysis Today 165, 138 (2011)
- 10.J. Phys. Chem. C 114, 21516 (2010)
- 11.J. Phys. Chem. C 114, 14922 (2010)
- 12.J. Phys. Chem. C 113, 12943 (2009)

Multiscale Modeling Strategy for screening multimetallic electrocatalysts

Waste Heat Conversion into Electricity

Understand the properties and performance of nanomaterials for thermoelectric applications with a particular focus on their thermal conductivity

gradient

Electricity

Spacecraft's energy source

Solar Cell

Waste Heat Recovery

- 2. Phys. Rev. B 86, 165209 (2012)
- 3. Nano Lett. 12, 2918 (2012)
- 4. Phys. Rev. B 85, 125204 (2012)
- 5. Phys. Rev. B 83, 125202 (2011)
- 6. More coming soon

CO₂ Capture and Conversion

.... provide the guiding principles for the rational design and synthesis of novel regenerable amine-based solvents to realize the desired properties and performance for CO₂ capture, through systematic theoretical investigations of the atomistic mechanisms governing CO₂ capture and solvent regeneration.

First Principles-based Atomistic Modeling

Top-notch Computational Resources

High Performance Computing Systems at UT-Austin (http://www.tacc.utexas.edu)

(1) "STAMPEDE"

One of the largest computing systems in tworld for open science research.

- 102,400 Processing Cores
- 205 TB Memory
- 7+ Petaflops of Peak Performance

(2) "LONESTAR"

One of the most powerful academic supercomputers in the world.

- 22,656 Processing Cores
- 44 TB Memory
- 300+ Teraflops of Peak Performance

Successful completion of our extensive first principles-based investigations can be facilitated by utilizing the world's top-class supercomputing facilities.