Problem 6.14) Use Stokes' law's

\[U(s) \rightarrow \frac{0.8}{(0.4s+1)^2} \rightarrow \frac{5s+0.5}{2s^2 + 3s + 1} \rightarrow Y(s) \]

\[G(s) = \frac{4e^{-0.5s}}{(0.5s+1)(0.4s+1)(2s+1)(s+1)} \]

\[\text{new } \theta = \theta + 0.5 \times 0.4 = 0.4 \]
\[\text{new } T = 2 + 0.5 \]

\[F_{OPT} = \frac{4e^{-(\theta+1.5)s}}{2.5s+1} \]

For Simulink, \(\theta = 2.3 \)

See attached Simulink.
Homework # 4 Solutions

Simulink model for original function

Simulink model for FOPTD

Plot of two models

As the model shows the FOPTD model is a relatively good fit of the original model. For this purpose the FOPTD accurately reflects the actual transfer functions.
Problem 2:

a) Fit the time constant graphically assuming that the final temperature is 25 °C.

\[Gain \times input = K_m = (25 - 79) = -54^\circ C \]

\[\tilde{T} = T - T_{ss} = 54 \times \left(1 - e^{-\frac{t}{\tau}}\right) \]

Find \(T \) when \(\tau = 1 \)

\[T(t) = -54 \times (1 - 0.3679) + 79 = 44.87^\circ C \]

\(T \) is at 44.87 °C at \(t = 35.33 \) seconds therefore \(\tau = 35.33 \) seconds.

b) Minimize linear regression program by only varying \(\tau \) with \(K = 1 \).

c) Minimize linear regression program by varying \(K \) and \(\tau \).

Nonlinear Regression

![Nonlinear Regression Graph]

\[\text{d) Part a and b look very similar. This is because they are both assuming that a given change in input should equal the same change in output (K=1). They do not fit the model very well and they intersect at the point } t = 35 \text{ which is expected because that is what was used to obtain } \tau \text{ from part a. Part c resembles the model better but still does not have as drastic of an initial descent. Hypothetically the } K \text{ should be equal to one and it appears that given infinite time the temperature would reach a steady state of 25 °C.} \]

<table>
<thead>
<tr>
<th>Part</th>
<th>(K)</th>
<th>(\tau)</th>
<th>SSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>35.33</td>
<td>799.5598</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>36.49545</td>
<td>795.3494</td>
</tr>
<tr>
<td>c</td>
<td>0.779069</td>
<td>15.12331</td>
<td>308.5125</td>
</tr>
</tbody>
</table>