Homework #2

Problem 1)
Part a)

\[T = \frac{Q}{MC} \cdot t + \text{constant} \]

Plot using Excel, MATLAB, or another program that can do linear regression

Using Excel...

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>500</td>
<td>31</td>
</tr>
<tr>
<td>1000</td>
<td>37</td>
</tr>
<tr>
<td>1500</td>
<td>43</td>
</tr>
</tbody>
</table>

Beaker of Water Heated with 110 Watts

\[T = 0.0126 \cdot t + 24.3 \]

\[R^2 = 0.9985 \]

\[\frac{Q}{MC} = 0.0126 \]

\[MC = \frac{Q}{0.0126} = 8730.16 \frac{J}{K} \]

\[SSE = \sum_{i=1}^{n} (T_i - f(t_i))^2 = 0.3 \]
Part b)

\[MC \frac{dT}{dt} = -UA(T - T_a) \]

\[\frac{dT}{(T - T_a)} = - \frac{UA}{MC} dt \]

\[\ln(T - T_a) = - \frac{UA}{MC} t + c_1 \]

\[T = c_1 e^{-\frac{UA}{MC} t} + T_a \]

Many ways to solve...
- Using an exponential fit in Excel or MATLAB
- Rearranging equation to create a linear model (shown below)

Plot \(\ln(T-T_a) \) versus time

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>(\ln(T-T_a))</th>
<th>Trendline</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.995732274</td>
<td>2.944166</td>
</tr>
<tr>
<td>5000</td>
<td>2.63905733</td>
<td>2.659188</td>
</tr>
<tr>
<td>15000</td>
<td>2.197224577</td>
<td>2.089232</td>
</tr>
<tr>
<td>20000</td>
<td>1.791759469</td>
<td>1.804254</td>
</tr>
<tr>
<td>Slope</td>
<td>-5.69956E-05</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>2.944165537</td>
<td></td>
</tr>
</tbody>
</table>

![Fluid Cooling](image)

\[- \frac{UA}{MC} = -5.69956E^{-5}\]

\[UA = 5.69956E^{-5} \cdot 8730.16 = 0.4976 \text{ W/K} \]

\[SSE = 1.851 \]
Part c) Solve differential equation to obtain the function $T(t)$:

$$MC \frac{dT}{dt} = Q - UA(T - T_a)$$

Rearrange and solve, I chose to use the method below

$$\frac{dT_h}{dt} + \frac{UA}{MC} T = 0$$

$$T_h = a_1 e^{-\frac{UA}{MC} t}$$

$$T_p = a_1 e^{-\frac{UA}{MC} t} \cdot \int \left(\frac{Q + UA T_a}{MC a_1 e^{-\frac{UA}{MC} t}} \right) dt$$

$$T_p = e^{-\frac{UA}{MC} t} \cdot \left(\frac{Q + UA T_a}{UA} \cdot \frac{UA}{e^{\frac{UA}{MC} t}} + a_2 \right)$$

$$T(t) = a_2 e^{-\frac{UA}{MC} t} + \frac{Q + UA T_a}{UA}$$

$$T(0) = 24^\circ C = a_2 + \frac{Q + UA T_a}{UA}
\quad a_2 = 24 - \frac{Q + UA T_a}{UA} = 24 - \frac{119 + 0.4976 \cdot 25}{0.4976} = -220.0611$$

$$T = 246.0611 - 220.0611 \cdot e^{-0.0000569978}$$

$$SSE = 1.71$$

HOWEVER! We are using MC calculated from a straight line fit and UA that is calculated using that MC. If the model really should include heat loss then MC and UA should be calculated by trying to minimize the SSE of the two equations below.

$$T = \frac{Q + UA T_a}{UA} + \left(T_o - \frac{Q + UA T_a}{UA} \right) \cdot e^{-\frac{UA}{MC} t}$$

$$T = c_1 e^{-\frac{UA}{MC} t} + T_o$$

Below I’ve minimized the two SSEs and it is clearly lower than the SSEs obtained using the MC and UA obtained in parts a and b

<table>
<thead>
<tr>
<th>Time</th>
<th>Temperature</th>
<th>T_{calc}</th>
<th>$(T-T_{\text{calc}})^2$</th>
<th>Time</th>
<th>Temperature</th>
<th>T_{calc}</th>
<th>$(T-T_{\text{calc}})^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(seconds)</td>
<td>(°C)</td>
<td>(°C)</td>
<td></td>
<td>(seconds)</td>
<td>(°C)</td>
<td>(°C)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>24</td>
<td>24</td>
<td>0</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>31</td>
<td>30.56653</td>
<td>0.1879</td>
<td>5000</td>
<td>39</td>
<td>40.01213</td>
<td>1.024399</td>
</tr>
<tr>
<td>1000</td>
<td>37</td>
<td>36.95738</td>
<td>0.001817</td>
<td>15000</td>
<td>34</td>
<td>33.30912</td>
<td>0.477322</td>
</tr>
<tr>
<td>1500</td>
<td>43</td>
<td>43.17725</td>
<td>0.031418</td>
<td>20000</td>
<td>31</td>
<td>31.09803</td>
<td>0.009611</td>
</tr>
<tr>
<td></td>
<td>SSE</td>
<td>0.221134</td>
<td></td>
<td></td>
<td>SSE</td>
<td>SSE</td>
<td>1.511332</td>
</tr>
<tr>
<td>UA</td>
<td>0.449993539</td>
<td></td>
<td></td>
<td>MC</td>
<td>8297.071472</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The table and graphs below show the comparisons of the answers. Modeling the heat loss can benefit the model but not to a significant degree in this regime. More work is also required because new UA's and MC's would be required to make the heat loss included model beneficial.

<table>
<thead>
<tr>
<th></th>
<th>Heating</th>
<th></th>
<th>Cooling</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Linear</td>
<td>Heat loss</td>
<td>Optimized</td>
<td>Part B</td>
</tr>
<tr>
<td>UA (W/K)</td>
<td>0.4976</td>
<td>0.44999</td>
<td>0.4976</td>
<td>0.44999</td>
</tr>
<tr>
<td>MC (J/K)</td>
<td>8730.16</td>
<td>8730.16</td>
<td>8297.07</td>
<td>8730.16</td>
</tr>
<tr>
<td>SSE</td>
<td>0.3</td>
<td>1.71</td>
<td>0.22</td>
<td>1.85</td>
</tr>
</tbody>
</table>

Beaker of Water Heated with 110 Watts

Heating of the beaker
Beaker of Water Cooling

Cooling of the beaker
Problem 2) From slide 28 (chapter 2)

\[
\frac{dy}{dt} = -y + 6e^{-5t}
\]

\[
y = \frac{T - \overline{T}}{W_d - \overline{W}_a}, \quad \overline{T} = 140^\circ C, \quad \overline{W}_a = 0.83e^{-\frac{t}{10}}
\]

\[
y(0) = 50
\]

\[
2s y(s) - 50 = -\frac{y(s)}{s}
\]

\[
y(s)[2s + 1] = \frac{6e^{-5s} \cdot 50}{s}
\]

\[
y(s) = \frac{6e^{-5s} \cdot 50}{s(2s + 1)} = \frac{(0.5)(6e^{-5s})}{s(2s + 1)} + \frac{50}{2s + 1}
\]

\[
y(t) = (6e^{-5t})(1 - e^{-0.5t}) + 50e^{-0.5t}
\]

\[
T - \overline{T} = (6e^{-5t})(W_d - \overline{W}_a)(1 - e^{-0.5t}) + 50e^{-0.5t}
\]

\[
0 = 6e^{-5t}(0 - 0.83e^{-t})(1 - e^{-0.5t}) + 50e^{-0.5t}
\]

Solve for \(t \)

\[
t = 1.39 \text{ hours}
\]
Problem 3) Combine 2 first order ODE into one second order ODE by eliminating T_e

$$wC(T_i + h_e A(T_e - T)) - wC = mc \frac{dT}{dt}$$ \hspace{1cm} (1)

$$Q - h_e A(T_e - T) = m c_e \frac{dT_e}{dt}$$ \hspace{1cm} (2)

First solve (1) for T_e, then differentiate to find $\frac{dT_e}{dt}$.

Substitute T_e into (2)

$$wC(T_i + h_e A(T_e - T)) - wC = mc \frac{dT}{dt}$$

$$T_e = \frac{mc \frac{dT}{dt} + wC - wC(T_i + h_e A T)}{h_e A}$$

$$\frac{dT_e}{dt} = \frac{mc \frac{dT}{dt}}{h_e A} + \frac{dT}{dt} \left(\frac{wc}{h_e A} + 1 \right) - \frac{dT_i}{dt} \frac{wc}{h_e A}$$

Plug into 2

$$Q = h_e A \left(mc \frac{dT}{dt} + wC - wC(T_i + h_e A T) \right) + h_e A T = m c_e \left(\frac{mc \frac{dT}{dt}}{h_e A} + \frac{dT}{dt} \left(\frac{wc}{h_e A} + 1 \right) - \frac{dT_i}{dt} \frac{wc}{h_e A} \right)$$

$$mc c_m \frac{dT}{dt} + \frac{dT}{dt} \left(\frac{mc c_e}{h_e A} + \frac{mc c_e}{wC - wC} \right) = \frac{dT_i}{dt} wC - dC + \frac{dT_i}{dt} wC + \frac{Q}{wC}$$
Problem 3.6)

a) $Y(s) = \frac{s(s+1)}{(s+2)(s+3)(s+4)} = \frac{\alpha_1}{s+2} + \frac{\alpha_2}{s+3} + \frac{\alpha_3}{s+4}$

$x_1 = \frac{s(s+1)}{(s+3)(s+4)} \bigg|_{s=-2}$

$x_2 = \frac{s(s+1)}{(s+2)(s+4)} \bigg|_{s=-3}$

$x_3 = \frac{s(s+1)}{(s+2)(s+3)} \bigg|_{s=-4}$

$x(s) = \frac{1}{s+2} - \frac{1}{s+3} + \frac{1}{s+4}$

$x(t) = e^{-2t} - e^{-3t} + e^{-4t}$

b) $Y(s) = \frac{s+1}{(s+1)^2} = \frac{\alpha_1}{s+1} + \frac{\alpha_2}{(s+1)^2}$

$x_1 = \frac{s+1}{(s+1)^2} \bigg|_{s=-1}$

$x_2 = 3$

$x(s) = \frac{1}{s+1} + \frac{3}{(s+1)^2}$

$x(t) = e^{-t} + 3te^{-t}$

c) $Y(s) = \frac{1}{s^2 + 4}$

$x(s) = \frac{1}{s^2 + (2s+1)} = \frac{1}{(s+1)^2 + 0.75} = \frac{1}{(s+1)^2 + 0.5^2}$

$x(t) = \frac{1}{1.155} e^{-1.5t} \sin(0.8466t)$
3.9

a) \[X(s) = \frac{6(s+2)}{(s^2 + 9s + 20)(s+4)} = \frac{6(s+2)}{(s+4)(s+5)(s+4)} \]

\[x(0) = \lim_{s \to \infty} \left[\frac{6s(s+2)}{(s+5)(s+4)^2} \right] = 0 \]

\[x(\infty) = \lim_{s \to 0} \left[\frac{6s(s+2)}{(s+5)(s+4)^2} \right] = 0 \]

\(x(t) \) is converging (or bounded) because \([sX(s)]\) does not have a limit at \(s = -4 \) and \(s = -5 \) only, i.e., it has a limit for all real values of \(s \geq 0 \).

\(x(t) \) is smooth because the denominator of \([sX(s)]\) is a product of real factors only. See Fig. S3.9a.

Figure S3.9a. Simulation of \(X(s) \) for case a)
b) \[X(s) = \frac{10s^2 - 3}{(s^2 - 6s + 10)(s + 2)} = \frac{10s^2 - 3}{(s - 3 + 2j)(s - 3 - 2j)(s + 2)} \]

\[x(0) = \lim_{s \to \infty} \left[\frac{10s^3 - 3s}{(s^2 - 6s + 10)(s + 2)} \right] = 10 \]

3-9

Application of final value theorem is not valid because \([sX(s)]\) does not have a limit for some real \(s \geq 0\), i.e., at \(s = 3 \pm 2j\). For the same reason, \(x(t)\) is diverging (unbounded).

Figure S3.9b. *Simulation of X(s) for case b*)
$x(t)$ is oscillatory because the denominator of $[sX(s)]$ includes complex factors. See Fig. S3.9b.

c) $X(s) = \frac{16s + 5}{(s^2 + 9)(s + 3j)(s - 3j)}$

$x(0) = \lim_{s \to \infty} \left[\frac{16s^2 + 5s}{(s^2 + 9)} \right] = 16$

Application of final value theorem is not valid because $[sX(s)]$ does not have a limit for real $s = 0$. This implies that $x(t)$ is not diverging, since divergence occurs only if $[sX(s)]$ does not have a limit for some real value of $s > 0$.

$x(t)$ is oscillatory because the denominator of $[sX(s)]$ is a product of complex factors. Since $x(t)$ is oscillatory, it is not converging either. See Fig. S3.9c

![Graph of $X(s)$ for case c](image)

Figure S3.9c. Simulation of $X(s)$ for case c)