DEFECTS AND DOPANTS IN SEMICONDUCTORS AND OXIDES

 

A.     Formation, structure and properties of native defects in semiconductors: 

Self-interstitials and vacancies are fundamental native defects in all crystalline materials.  Ballistic processes, which occur during high-energy ion implantation during semiconductor manufacturing, lead directly to a local vacancy excess at a depth near half the projected ion range and a silicon interstitial excess distribution at a depth close to the ion range.  It is well established that single interstitials and single vacancies are highly mobile in Si, even at room temperature, allowing the excess interstitials and vacancies to remain in bulk Si in the form of clusters or complexes with injected dopants.  There have been significant efforts to understand the fundamental behavior of these native defects as a consequence of their crucial role in defining ultrashallow pn junctions for ever smaller semiconductor device fabrication.  Using first principles-based atomistic modeling, we have examined the formation, structure and thermal stability of defect clusters under various strain conditions, and how the presence of cluster defects affects the mechanical, optical and thermal properties of host materials.

¡×         S. Lee, R.J. Bondi, and G.S. Hwang, ¡°Formation and Structure of Vacancy Defects in Silicon: Combined Metropolis Monte Carlo, tight-binding molecular dynamics, and density functional theory calculations¡± Phys. Rev. B 80, 245209 (2009).

¡×         R.J. Bondi, S. Lee and G.S. Hwang, ¡°Theoretical Characterization of Silicon Self-Interstitial Clusters in Uniform Strain Fields,¡± Phys. Rev. B 80, 125202 (2009).

¡×         R.J. Bondi, S. Lee and G.S. Hwang, ¡°Prediction of the Formation of Stable Periodic Self-Interstitial Chains [(I4)m, m=1-4] in Si under Biaxial Strain,¡± Appl. Phys. Lett. 94, 264101 (2009).

¡×         S. Lee, R.J. Bondi and G.S. Hwang, ¡°Integrated Atomistic Modeling of the Growth and Structure of Self-interstitial Defects in Silicon,¡± Molecular Simulation 35, 867 (2009).

¡×         R.J. Bondi, S. Lee and G.S. Hwang, ¡°Biaxial Strain Effects on the Structure and Stability of Self-Interstitial Clusters in Silicon,¡± Phys. Rev. B 79, 104106 (2009).

¡×         S. Lee and G.S. Hwang, ¡°Theoretical Determination of Stable Fourfold-Coordinated Vacancy Clusters in Si,¡± Phys. Rev. B 78, 125310 (2008).

¡×         S. Lee and G.S. Hwang, ¡°Growth and Shape Transition of Small Silicon Self-Interstitial Clusters,¡± Phys. Rev. B 78, 045204 (2008).

¡×         S. Lee and G.S. Hwang, ¡°Structure and stability of small compact self-interstitial clusters in crystalline silicon,¡± Phys. Rev. B 77, 085210 (2008).

B.     Defects and impurities in amorphous silica:

This proposal aims to develop a deeper understanding of the fundamental behavior and properties of point-like defects and chemical impurities in amorphous silica materials. 

¡×         C.-L. Kuo and G.S. Hwang, ¡°Structure and Diffusion of Boron in Amorphous Silica: Role of Oxygen Vacancy Related Defects,¡± Phys. Rev. B 79, 165201 (2009).

¡×         C.-L. Kuo, S. Lee, and G.S. Hwang, ¡°Structure and Dynamics of Silicon-Oxygen Pairs and Their Role in Silicon Self-diffusion in Amorphous Silica,¡± J. Appl. Phys. 104, 054906 (2008).

¡×         C.-L. Kuo and G.S. Hwang, ¡°On the Origin of Nitrogen-induced Retardation of Boron Diffusion in Amorphous Silica,¡± Appl. Phys. Lett. 92, 92112 (2008).

C.      Structure and diffusion of defect-dopant complexes in semiconductors: 

This research aims to develop predictive kinetic models for ultrashallow junction formation in strained silicon (Si) channels with amorphous thermal silicon dioxide (a-SiO2) gates, needed for rational experimental designs for the 45-nm node or beyond.  Using first principles-based atomistic modeling, this theoretical program concentrates on developing a deeper understanding of the structure and dynamics of defect-dopant complexes in strained Si as well as at the interfaces of strained-Si with a-SiO2.  Based on these fundamental understanding and data, with experimental validation, we will develop predictive kinetic models for the evolution of defect and dopant profiles during post-implantation annealing.  The kinetic models will further be fed into implantation (UTMARLOWE/TOMCAT) and diffusion (DADOS, FLOOPS) simulators to predict the evolution of defect profiles during dopant concentration and electrical activation profiles during post-implantation annealing.

¡×         N. Kong, T.A. Kirichenko, G.S. Hwang, and S.K. Banerjee, ¡°Arsenic defect complexes at SiO2/Si interfaces: A density functional theory study,¡± Phys. Rev. B 80, 205328 (2009).

¡×         N. Kong, T.A. Kirichenko, G.S. Hwang, and S.K. Banerjee, ¡°Interstitial-based Boron Diffusion Dynamics in Amorphous Silicon,¡± Appl. Phys. Lett. 93, 082109 (2008).

¡×         S. Harrison, T. Edgar, and G.S. Hwang, ¡°Prediction of B-Sii-F Complex Formation and Its Role in B TED Suppression and Deactivation,¡° J. Appl. Phys. 101, 66102 (2007).

¡×         S. Harrison, T. Edgar, and G.S. Hwang, ¡°Prediction of Anomalous Fluorine-Silicon Interstitial Pair Diffusion in Crystalline Silicon,¡° Phys. Rev. B-rapid communication 74, 121201 (2006).

¡×         S. Harrison, T. Edgar, and G.S. Hwang, ¡°Interstitial-Mediated Mechanisms of Arsenic and Phosphorus Diffusion in Silicon,¡° Phys. Rev. B 74, 195202 (2006).

¡×         S. Harrison, T. Edgar, and G.S. Hwang#, ¡°Interstitial Mediated Arsenic Clustering in Ultrashallow Junction Formation,¡° Electrochem. Solid-State Lett. 9, G354 (2006).

¡×         S. Harrison, T. Edgar, and G. S. Hwang, ¡°Structure, Stability, and Diffusion of Arsenic-Silicon Interstitial Pairs,¡± Appl. Phys. Lett. 87, 231905 (2005).

¡×         S. Harrison, T. Edgar, and G. S. Hwang, ¡°Structure and Dynamics of the Diarsenic Complex in Crystalline Silicon,¡± Phys. Rev. B 72, 195414 (2005).

¡×         T. Kirichenko, D. Yu, S. Banerjee, and G. S. Hwang, ¡°Silicon interstitials at Si/SiO2 interfaces: Density functional calculations,¡± Phys. Rev. B 72, 35345 (2005).

¡×         S. Harrison, T. Edgar, and G. S. Hwang, ¡°Interaction between interstitials and arsenic-vacancy complexes in crystalline silicon,¡± Appl. Phys. Lett., 85, 4935 (2004).

¡×         T. Kirichenko, S. Banerjee, and G. S. Hwang, ¡°Surface Chemistry Effects on Vacancy and Interstitial Annihilation on Si(001),¡± Phys. Status Solidi B 241, 2303 (2004).